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1. INTRODUCTION

The simulations of severe flow conditions, such as in unsteady reactive or supersonic
flows, require robust numerical methods. Many computations use a class of algorithms
based either on flux vector splitting (VS) or on flux difference splitting (DS). Liou and
Steffen [9] have proposed a remarkably simple upwind VS. This splitting, called AUSM,
treats the convective and pressure terms separately. The convective quantities are upwind-
biased extrapolated to the cell interface using a properly defined cell face advection Mach
number. AUSM keeps the qualities of VS (robustness and efficiency) and recovers the
accuracy attributed to DS. To capture strong and/or rapid physical fluctuations accurately,
the local variation of each quantity has to be incorporated as much as possible in the
writing of the scheme. For instance, ENO schemes choose the stencil which provides the
most regular solution in order to minimize numerical over- and undershoots. In this paper,
we take the limiter which minimizes the numerical error terms (dissipative and dispersive
terms) following the local evolution of quantities. To improve efficiency, the equivalent
system (ES) needs to be studied, including the expression for the slope limiters. Their
expressions are controlled by both the local and the surrounding physical variation of the
quantities. For each quantity, six different cases are considered, each associated with a
different physical variation. A triad of limiters is defined, which minimizes or cancels the
second-order truncation errors. From this study, a new explicit scheme is written. Compared
to a common TVD-MUSCL scheme, it is not complicated and gives a more precise solution.
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This scheme is applied to 1-D, 2-D, and 3-D test cases. The results show that we obtain a
good accuracy compared to ENO or Hermitian schemes.

2. FLUX SPLITTINGS AND MUSCL APPROACH

The hyperbolic part of the conservation form of the 1-D Navier–Stokes equations is
classically written as

Vt + fx = 0 with V =
 ρ

ρu
ρE

, f =
 ρu
ρu2+ p
ρuH

,
(1)

V(x, 0) = V0(x), −∞ < x < +∞, t ≥ 0.

The equation of state isp = ρRT. ρ, u, p, T, R, E, andH are, respectively, the density, the
velocity, the static pressure, the temperature, the universal gas constant, the total energy,
and the total enthalpy per unit of volume. In discrete form, (1) is expressed as

Vn+1
j = Vn

j − σ
(
Fj+ 1

2
− Fj− 1

2

)
,

(2)
Vn

j = V
(
Un

j

)
, σ = 1t/1x, Fj+ 1

2
= F

(
Un

j−1,U
n
j ,U

n
j+1,U

n
j+2

)
,

whereF is a numerical flux which has to verifyF(U, . . . ,U ) = f (V), andUn
j = U j is a

set of physical quantities defined at timen1t and at grid pointj1x.1x is assumed to be
constant and1t is related to1x by the CFL condition. With the MUSCL approach [21], the
backward and forward extrapolated values ofU j+(1/2) at the interfacej + 1

2 can be written
as

U L
j+1/2 = L(U j−1,U j ,U j+1) = Uj + ϕ1(r j )

2
(U j+1−U j ),

(3)

U R
j+1/2 = R(U j ,U j+1,U j+2) = U j+1−

ϕR
2

(
1

r j+1

)
2

(U j+1−U j ).

At the interfacej − 1
2, we have

U L
j−1/2 = L(U j−2,U j−1,U j ) = Uj−1+ ϕ

L
2 (r j−1)

2
(U j −U j−1),

U R
j−1/2 = R(U j−1,U j ,U j+1) = Uj −

ϕ1
(

1
r j

)
2

(Uj −U j−1),

whereϕ1 andϕL ,R
2 are nonlinear functions ofr j = (U j −U j−1)/(U j+1−U j ). The non-

linear interpolationsL andR have to verify the following properties (P1): homogeneity,
translation invariance, left–right symmetry, and convexity [20].

The flux Fj+(1/2) is written in the general form

Fj+1/2 = F
(
U L

j+1/2,U
R
j+1/2

)−81G,
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where

81G = 8[G(U R
j+(1/2)

)− G
(
U L

j+(1/2)
)]

is a dissipation term. We are more interested in the primitive form of AUSM splitting. If
we define

M = F+M + F−M =
[
(M L + 1)2

4

]
+
[
− (M

R− 1)2

4

]
,

 0
p
0

 = F+a + F−a =

 0

pL
(

1+M L

2

)
+ pR

(
1−M R

2

)
0

, F L ,R
c =

 ρc
ρcu
ρcH

L ,R

,

then this splitting can be written, at the grid pointj + (1/2) and for−1≤ M ≤ 1, as

F(U L ,U R) = (F+M + F−M)Fc + F+a + F−a
(4)

8 = |M |, 1G = 1

2

[
F R

c − F L
c

]
, Fc = F L

c + F R
c

2
,

whereM and c represent the Mach number and the speed of sound, respectively. It is
possible to take different expressions forU. Generally, it is advantageous to apply the
MUSCL approach to the natural quantities. Because our aim, in the future, is the study of
the unsteady reactive flows where the temperatureT changes rapidly and where the specific
heatsCp andCV depend strongly onT (reactive flows, for example), it seems logical to
choose

U = [ ρ, u, T ]T .

The analysis of ES, also calledmodified equations[11, 14], obtained from Taylor ex-
pansions, quantifies the truncation error of the discrete form as1x and1t → 0. U andF
are assumed to be differentiable functions ofC4. For each componentUi , the expansions
reflect the surrounding physical behavior associated with the specific approach used here.
Six different cases are considered for each componentUi (Fig. 1):

no extremum atj

case 1: monotonic evolution
case 2: extremum at the nodesj − 1 andj + 1
case 3: extremum at the nodej − 1 or j + 1

 ,
extremum atj

case 4: no extremum at the nodesj − 1 andj + 1
case 5: extremum at the nodesj − 1 andj + 1
case 6: extremum at the nodej − 1 or j + 1

 .
The different cases considered above may be associated with physical phenomena having

different wavenumbersk and therefore may be linked with a range of wavenumbers or a
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FIG. 1. Different cases associated with the local physical fluctuations.

single wavenumber:

case 1↔ 0≤ k ≤ π

41x

case 2↔ k = 2π

31x
ork = π

21x

case 3↔ π

2L
≤ k ≤ π

21x
(L = length of the domain)

case 4↔ π

2L
≤ k ≤ π

21x

case 5↔ k = π

1x

case 6↔ k = 2π

31x
.

In this approach, the goal is to keep the primitive qualities of the schemes (in particular
the shock-capturing property or the solving of stiff phenomena) and, at the same time, to
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represent, as much as possible, the unsteady or turbulent fluctuations. Therefore, sufficiently
strong constraints are applied in some cases but, in others for example, the constraints are
weaker in order to develop and not to inhibit the energy cascade for the turbulent flows.
From these conditions, in addition to properties (P1), new basic conditions onϕ at the node
j are defined:

(1) To keep the TVD property for cases 4, 5, and 6, the value of a local minimum is
nondecreasing and the value of a local maximum is nonincreasing (property (P2)).

(2) A new extremum may appear at nodej when an extremum already exists in the
environs of nodej, to expand the energy cascade and to jump from the wavenumberk to
the wavenumber 2k. Therefore, the least dissipative scheme will be applied to cases 2 and
3 (property (P3)).

(3) When the evolution is monotonic (case 1), the scheme has to keep the TVD property
and to have an accuracy as high as possible (property (P4)).

In general, to avoid nonmonotonic behaviors when the sign of the physical variation
changes, it is assumed that

r < 0, ϕα = ϕ′α = 0, (α = 1, 2) (property(P5)).

The expressions ofϕ come from properties (P1), . . . , (P5) and from the study of the ES.
This study permits minimization of the dispersive and dissipative error terms produced by
the scheme. Property (P5) does not allow extension of this study based on Taylor expansions
to cases 2 and 3 and, consequently, the theoretical results based on analysis of the error
terms concern cases 1, 4, 5, and 6 only.

3. FIRST-ORDER ERROR TERMS IN SPACE

Taylor expansions can be made if the condition at the nodej ,∣∣U R
i −U L

i

∣∣¿ Max
(∣∣U R

i |, |U L
i

∣∣) , (i = 1, . . . ,3),

is assumed. This says that the jump at the interfacej is considered to be weak (the strong
discontinuities are excluded from the proof). The case|U R

i −U L
i | ≈ Max(|U R

i |, |U L
i |) is

not considered in this paper, although it may be present in the velocity under certain circum-
stances, such as when this quantity has strong fluctuations around zero. The expansions are
calculated for positive values ofM. The expressions forM < 0 are obtained by symmetry
(gL

i is replaced bygR
i and reciprocally).

After calculation of the Taylor expansions ofr(U), ϕα(r (U )) and of the fluxes9 =
9(ϕα(r (U ))) with 9 = F−M , F+M , Fc, . . . at the nodej for both casesUx 6= 0 andUx = 0
(with Uxx 6= 0), (1) is transformed into

Vt + Fx +1x[ A]Uxx + O(1x2) = 0, (5)

where [A] is a (3, 3) matrix. The first-order error term in space, for thekth equation (k = 1,
2, 3) of the system (5) and for the splitting (4), can be expressed as

3∑
i=1

Aki Uixx =
1

2

3∑
i=1

{ (
Fck F+′M + M + |M |

2 F L′
ci
+ F+′ai

)[
gL

i

]
−(Fck F−′M + M − |M |

2 F R′
ci
+ F−′ai

)[
gR

i

]}Uixx
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where

gL ,R = gL ,R(ϕ) = ϕ1(−1)

2
+ ϕ

L ,R
2 (3)

2
− 1 if Ux = 0,

gL ,R = gL ,R(ϕ′) = ϕ′L ,R2 (1)− ϕ′1(1) if Ux 6= 0,

ϕ′ = dϕ

dr
, F+′ = d F+

dUL
, F−′ = d F−

dUR
,
(
F L ,R

c

)′ = d Fc

dUL ,R
, . . . .

The first-order term cancels ifgL ,R = 0; therefore, whenUx 6= 0,

ϕ′L2 = ϕ′R2 = ϕ′1 for r = 1; (6)

whenUx = 0,

ϕL
2 = ϕR

2 = 2 for r = 3. (7)

The Taylor expansions at nodej include the presence of one extremum (cases 4, 5, and
6) or none (case 1) at this point. But they do not take into account whether one extremum
exists or not at the neighborsj − 1 and j + 1. If there is no extremum associated withj − 1
and j + 1 (cases 1 and 4), any additional constraint appears; but if an extremum is present
at these points, the scheme accuracy automatically degenerates (cases 5 and 6):

• If Ux 6= 0 at nodej, condition (6) is easily met if the nodesj − 1, j, and j + 1 have no
extremum for componentU (case 1). In this case, it is sufficient to take the same function
in the second-order TVD domain for each pointj − 1, j, j + 1.
• If Ux = 0 at nodej, condition (7) is met ifj − 1 and j + 1 are not associated with

an extremum. But this condition is no longer met if there exists at least one extremum at
one of the neighbors ofj. When wavelength fluctuations are smaller than or equal to 31x
(cases 5 and 6) the first-order error term is still present. In this case, the scheme has stronger
dissipative properties to damp these fluctuations.

For case 5, wheregL ,R = −1, and for case 6, wheregL = −1 andgR = 0, the dissipative
matrix is written, whenM ≤ 1,

[ A] = [ A]c + [ A]a,

with

[ A]c = −

 A11 A12 A13

u A11 u A12+ ρA11 u A13

H A11 H A12+ ρu A11 H A13+ ρCp A11

 ,
where

A11 = c

2
M, A12 = ρ

2

(
Mδl5+ 1+ M

2
δl6

)
, A13 = ρc

4T
M(1− M)

(
δl5+ δl6

2

)
,

[ A]a = − c2

2γ

 0 0 0
2
ρ

A12
ρ

c

(
δl5+ δl6

2

)
1
T

(
A12+ ρ

4δl6
)

0 0 0

 .
δl5 andδl6 are the Kronecker symbol,l = 5 (case 5) or 6 (case 6).
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WhenM > 1,

[ A] = −

 A11
ρ

2 0

u A11+ RT
2 2ρA11

ρ

2 R

H A11
ρ

2 H + ρu A11 ρCp A11

 .
For case 5, whenM → 0, many terms cancel. In particular, the dissipative matrix cancels if
there are only density or temperature fluctuations. In this case, a somewhat more complex
dissipative function8d in the region ofM ≈ 0 may be introduced [13]. For case 6, the
velocity fluctuations, when they exist, avoid use of the function8d since the scheme remains
dissipative even forM = 0. For both cases, some elements of [A] present a discontinuity
at M = 1. The improved scheme AUSM+ allows attenuation of this problem [10].

4. SECOND-ORDER ERROR TERMS IN SPACE

If, at nodej, the variations of all the componentsUi are included in cases 1 and 4, the
spatial derivatives are approximated by a second-order scheme in space ifϕα are chosen
well. The expressions ofϕα are defined by studying the second-order error term in space.
The discrete form of Eq. (1) takes the expression

Vt + Fx +1x2(χ1BUxxx+ CUxx + χ2DUxx + EUx) = O(1x3), (8)

where

B = B(U ),
C = C

(
ϕ′′1, ϕ

′′R
2 , ϕ′′L2 ,U,Ux

)
if Ux 6= 0 at nodej (case 1),

C ≡ 0 if Ux = 0 at nodej (case 4),
D = D(U,Ux),

E = E(U,Ux),

χ1 = 1− 3ϕ′2 andχ2 = 1− ϕ′1− ϕ′2 if Ux 6= 0 at nodej,
χ1 = 2+ ϕ1− ϕ2+ 2ϕ′1− 4ϕ′2 andχ2 = 2+ ϕ1− ϕ2 if Ux = 0 at nodej .


Because of homogeneity between cases 1 and 4 (whereC ≡ 0), the cancelation ofC for
case 1 gives the following condition onϕ′′ = d2ϕ

dr2 :

ϕ′′1(1) = ϕ′′R2 (1) = ϕ′′L2 (1). (9)

To avoid the appearance of numerical oscillations and to keep only the physical oscilla-
tions with higher wavenumbers (case 5 or 6), it is better to eliminate the dispersive error
term BUxxx. Although these oscillations are damped by the scheme, as we have seen in
the previous paragraph, it is harmful to drop artificially the scheme accuracy if this is not
necessary. Therefore, for cases 1 and 4, we letχ1 = 0. Applying conditions (6–7), we have

ϕ′2(1) = ϕ′1(1) =
1

3
if Ux 6= 0 at nodesj − 1, j and j + 1(case 1), (10)

ϕ′2(3) = 0 if Ux = 0 at nodej (case 4). (11)
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5. LIMITER EXPRESSIONS

From conditions (6), (9), and (10) and the propertiesP1 to P5, it is possible to define a
family of limiters ϕ1 at each nodej. ϕR

2 andϕL
2 are expressed in the same way at points

j + 1 and j − 1, respectively. At each pointj, we define atriad of limiters, each adapted
to the local variation of the physical quantities. If at nodej we have

(i) case 1(r > 0), we take limiterϕATVL defined in [1] as

ϕ1 = ϕATVL= 1

2

[
(1− κ)min

(
r,

3− κ
1− κ

)
+ (1+ κ)min

(
1,
(3− κ)r

1− κ
)]

with κ = 1/3

(12)

(this is a third-order interpolation ofU L
j+1/2 andU R

j−1/2 whenr is closed to 1);
(ii) cases 2 and 3(r > 0), we choose the least dissipative limiter to develop the energy

cascade (property (P3))

ϕ1 = ϕcent= 1 (centered interpolation, no TVD scheme); (13)

(iii) case 4(r ≤ 0), we define

ϕ1 = 0; (14)

(iv) cases 5 and 6,ϕ has to verify only the constraint(P5).

The selected triad of limitersϕtriad is plotted in Fig. 2. This selection is not unique and
other choices of limiters could be made.

FIG. 2. Selected triad of limiters.
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Algorithmically, the correction proposed herein is easy to implement and the additional
time consumed is very small. The new encoding is summarized hereafter.

The expressions (3) are rewritten as

U L
j+1/2 = U j + 1

4
[(1− κ j )1− j + (1+ κ j )1+ j ],

U R
j+1/2 = U j+1− 1

4
[(1− κ j+1)1+ j+1 + (1+ κ j+1)1− j+1],

1+ j = Max[0,Min(A, ω j B)] sgn(δU ) j+1/2,

1− j = Max[0,Min(B, ω j A)] sgn(δU ) j−1/2,

A = δU j+1/2 sgn(δU ) j−1/2,

B = δU j−1/2 sgn(δU ) j+1/2,

δU j+1/2 = U j+1−U j ·

This set of equations is well known [24]. For example, with the limiter Superbee [15],
ω j = 2 and κ j = dim(sgn(δU j+1/2), 0)− dim(0, sgn(δU j+1/2)) and with the limiter
ϕATVL [1], ω j = (3− κ j )/(1− κ j ) andκ j = 1/3. dim(. , .) is the FORTRAN intrinsic func-
tion.

About theϕtriad, we have

ω j =
(

3− κ j

1− κ j + ε
)

i2+ (1− i2),

κ j = i4

3
+ (1− i4)i2,

i2 = 1

2
iabs[sgn(δU ) j−1/2+ sgn(δU ) j+1/2],

i4 = 1

4
iabs[sgn(δU ) j−3/2+ sgn(δU ) j−1/2+ sgn(δU ) j+1/2+ sgn(δU ) j+3/2],

whereiabs is the FORTRAN intrinsic function andε→ 0. These expressions forω j and
κ j are the only modifications introduced in the code.

From these expressions, we can summarize the values ofω j andκ j in the following table:

Case 1 ω j ≈ 3− κ j

1− κ j
κ j = 1

3

Case 2 and 3 ω j →∞ κ j = 1
Case 4, 5, and 6 ω j = 1 κ j = 0

Althoughω j andκ j take the same values for cases 4, 5, and 6, the scheme does not
degenerate into first order automatically, in particular for case 4 because accuracy also
depends on the values of these both parameters at nodesj − 1 and j + 1.

6. NUMERICAL RESULTS

The triad of limiters plotted in Fig. 2 is tested on Euler and Navier–Stokes equations.
It is applied to the 1-D simulation proposed by Shu and Osher [18] to simulate the in-
teraction between a moving shock wave and a fluctuating flow. A 2-D simulation of the
interaction between a weak shock and a spot of temperature is proposed. Two cases with
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freely decaying isotropic turbulence following the MILES approach [2] are also performed:
a quasi-incompressible case and a compressible case. Computations of viscous flows as
the advection of a Taylor vortex and 2-D and 3-D temporal compressible mixing layers are
presented. The viscous terms are solved with a second-order centered scheme and the time
integration is performed by means of the following second-order scheme:

Ṽj = Vn
j − σ(Fj+1/2− Fj−1/2),

(15)

Vn+1
j = 1

2

[(
Vn

j + Ṽj
)− σ(F̃j+1/2− F̃j−1/2)

]
.

For the multidimensional problems, a time-splitting method is used [19, 23]. The 2-D
and 3-D finite difference operators are split into a product of simpler operators (e.g., for a
2-D problem):

Vn+2
j =

(
£x

(
1t

2

)
£y

(
1t

2

)
£y

(
1t

2

)
£x

(
1t

2

))
Vn

j .

£x and£y are the 1-D difference operators in spatial directionsx andy associated with
the scheme (15).

6.1. Shu–Osher Test Case

In 1-D, this example is interesting because it uses the Euler equations to simulate the
interaction between a moving Mach 3 shock wave and a fluctuating flow represented by
sine waves in density. The initial conditions are described as

ρ = 3.857143, u = 2.629369, p = 10.33333 if−5≤ x < −4,

ρ = 1+ 0.2 sin 5x u= 0, p = 1 if 5 ≥ x ≥ −4.

The CFL number is equal to 0.5 and the final time ist = 1.8. Since the exact solution for
this problem is unknown, the solid line representing the numerical solution with 1600 cells
is assumed to be the exact solution.

Figures 3a–3c show the solution of the density field with 400 cells and the limiters
ϕminmod (the most dissipative of TVD second-order area),ϕsuperbee(the least dissipative of
TVD second-order area), andϕATVL. The limitersϕminmodandϕsuperbeegive middling solu-
tions.ϕminmoddamps the fluctuations and, at the opposite end,ϕsuperbeeenhances unphysical
amplitudes. The results are better withϕATVL but it is still too diffusive. Ifϕtriad is applied
(Fig. 3d), the solution is comparable to that of the third-order ENO scheme [18]. In partic-
ular, the high frequencies are well represented and the compression waves and the shock
are well captured.

6.2. Spot of Temperature–Shock Interaction

This configuration is a basic model for the interaction of a shock with a flame. Euler
equations are solved. The computational domain (x, y) has a dimension 4× 1. A uniform
grid with 401× 101 points is used andCFL= 0.5. The plane weak shock is located at
xs = 1. The prescribed pressure jump through the shock is1p/p∞ = 0.4, wherep∞ is
the static pressure at infinity, corresponding to a Mach numberM = 1.1588. The flow is
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FIG. 3. Shu–Osher test case. Density distributions att = 1.8.

initialized using the Rankine–Hugoniot relationships. Initially, the spot of temperature has
a top-hat shape and is surperposed on the base flow upstream of the shock. It is defined as

1T

T
= 1

2
[3+ tanh 100(0.2− r )],

with r =
√
(x − x0)2+ (y− y0)2, andx0 = 0.5, y0 = 0.5 are the coordinates of the initial

location of the center of the spot. The pertubation of temperature is supposed to be isobaric.
Periodic conditions are applied on the upper and lower boundaries. The initial temperature
field is presented in Fig. 4a. This interaction produces vorticity through two counter-rotating
vortices. Att = 3, the spot is far from the shock and the vorticity, concentrated in the core of
the vortices, cancels within the shock. With the classical limiters (e.g.,ϕATVL), the vorticity
field is not smooth and some irregularities are visible in the shock and behind the spot
(Fig. 4b). Withϕtriad, these problems dissappear (Fig. 4c). On these two last figures, 20
vorticity contours are plotted withωmax= 3 andωmin = −3. The longitudinal vorticity
distribution aty = 0.64 (line where the maximum value is located) is plotted for both
limiters. The vorticity level is better kept withϕtriad and the numerical oscillations through
the shock are nearly canceled (Fig. 5).

6.3. Freely Decaying Isotropic Turbulence

For this test case, the Euler equations are again solved. The simulations are performed in a
cube of edge length 2π with 653 uniformly distributed grid points. The boundary conditions
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FIG. 4. (a) Initial temperature field, (b) vorticity field att = 3 withϕATVL, and (c) vorticity field att = 3 with
ϕtriad.

FIG. 5. Longitudinal distribution of vorticity fory = 0.64 att = 3.
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FIG. 6. Time evolution of enstrophy and Taylor microscale, case C1.

are periodic in the three directions. Two cases studied in [4] are:

• a quasi-incompressible case (C1): initial rms Mach numberMrms= 0.2 and initial
compressibility ratioχ = 0,
• a sonic compressible case (C2):Mrms= 1 andχ = 0.05,

where

Mrms= urms

c
=
√

u′2

c
andx = εc

ε
,

whereEc is the compressible part of the spectrum energyE [4]. Overbars indicate the spatial
average. The initial velocity fields have power-law spectra∼k4e−2(k2/k2

0) with k0 = 2. The
computations are carried out up tot = 10, which corresponds to three initial eddy turn-over
times. The time step has a fixed value. The corresponding CFL numbers vary between 0.5
and 0.4 for C1 and between 0.3 and 0.2 for C2.

6.3.1. The quasi-incompressible case.As explained in [8], at large but finiteRe, the evo-
lution of freely decaying incompressible isotropic turbulence follows two different stages.
During the first one, the viscous effects are negligible, the flow develops strongly anisotropic
phenomena, and enstrophy increases dramatically because of vortex stretching. Afterward,
viscous effects begin to appear and play a major role on the creation of distorted dissipative
structures. The two stages are represented in Fig. 6, where the enstrophy is plotted versus
time. The results obtained with AUSM-ϕtriad are compared with three other schemes:

• a two-time-step scheme (15) using AUSM splitting and the third-order limiterϕATVL

which corresponds to the case 1 in Fig. 2,
• Roe TVD scheme withϕATVLusing a four-stage Runge–Kutta time marching technique

[4],
• a fifth-order-accurate in space MENO scheme using a three-stage Runge–Kutta TVD

time marching technique [4].

The schemes AUSM-ϕATVL and Roe-ϕATVL give about the same results, with a slightly
better performance for AUSM-ϕATVL. Use ofϕtriad allows improvement of the behavior of
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FIG. 7. Iso-surfaces of a constant value of vorticity att = 10, AUSM-ϕATVL (left) and AUSM-ϕtraid (right),
case C1.

the complete algorithm and comparison with equivalent results from MENO. The evolution
of both the curves is similar but with a time delay on the appearance of the peak of enstrophy.

The Taylor microscaleλ, characteristic of the mean spatial extension of the velocity
gradients, is used to measure the resolved gradients with the numerical algorithms. Figure 6
presents the time evolution ofλ for the four schemes. Again, the best results are obtained
with MENO and AUSM-ϕtriad. Particularly, AUSM-ϕtriad gives, att = 10, the smallest value
of λ. At this time, the respective values ofλ based on the mesh size1x are summarized in
this table:

Roe-ϕATVL AUSM− ϕATVL MENO AUSM-ϕtriad

4.71x 4.61x 4.31x 4.01x

The schemes have to reproduce the basic mechanisms of turbulence such as vortex stretch-
ing and the elongated structures called “worms.” Figure 7 shows the contours of vorticity at
t = 10 for schemes AUSM-ϕATVL and AUSM-ϕtriad. The chosen value is fixed at 2(ω̄2)1/2

whereω is the local vorticity. These schemes reproduce the worms as in spectral DNS
simulations but AUSM-ϕtriad gives a finer representation of these structures. Nevertheless,
for this case, the dissipation is still too high, particularly for wavenumbersk > 10 (Fig. 8).
If a centered interpolation is used for the MUSCL approach (ϕ = 1, ∀r ), the kinetic energy
spectrum is proportional tok2 (Fig. 9) as found in [7] during a lapse of time just before the
computation blows up. The scheme is no longer sufficiently dissipative to attenuate the accu-
mulation of energy at the greatest wavenumbers. But if a correct SGS model (Smagorinsky
model) is coupled with this AUSM-centered scheme, the theoretical−5/3 slope is obtained
(Fig. 9).

6.3.2. The compressible case.This case looks like the one studied in [12], whereMrms=
1.0 andχ = 0.068. With a PPM scheme and a high grid resolution (5123), the authors
distinguished three different temporal phases: an onset phase with the appearance of shocks
at its end (0≤ t ≤ 0.95, the time scale has to be divided byπ to fall back on the scale used
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FIG. 8. Kinetic energy spectrum att = 10, case C1.

in [12]), a supersonic phase with the setup of strong density contrastsρmax/ρmin(0.95≤
t ≤ 6.6), and a post-supersonic phase with a presence of vortex interactions and the vortical
decay. The three phases are visualized in Fig. 10, where the time evolution of the density
contrast is plotted for MENO and AUSM-ϕtriad schemes. The evolutions are close to those
found in [12] and the physical trends are reproduced.

FIG. 9. Kinetic energy spectrum with a centered scheme without (left) and with a Smagorinsky model (right)
at t = 10, case C1.
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FIG. 10. Time evolution of density contrast, case C2.

The time history of the kinetic energy plotted on Fig. 11 shows that AUSM-ϕtriad retains
more energy than the others along the second and the third stages. In particular, it preserves
more compressible energyEc for t ≥ 1, the time where the spectrum of compressible energy
begins to be saturated (Fig. 11).

6.4. Taylor Vortex Advection

The squared domain (x, y) has a dimension 1×1 and Navier–Stokes equations are solved.
A uniform grid with 2012 points is employed and CFL= 0.5. An isolated Taylor vortex
is initially superposed on a uniform flow with a Mach numberM = 0.8 and a Reynolds
numberRe= 104. The tangential velocity is given by

Vθ (r ) = C1re−C2r 2
,

with

C1 = 0.3

rc
e1/2, C2 = 0.5

r 2
c

, r =
√
(x − x0)2+ (y− y0)2, and rc = 0.075.

With these values, the viscous core radius is 1/2. The initial position of the vortex cen-
ter is x0 = 0.5, y0 = 0.5. Periodic conditions have been applied in both directions on the
boundaries.

The simulation is performed over a dimensionless timet = 5, corresponding to the
advection of the vortex over five lengths of the domain. Because of the effects of both
molecular viscosity and numerical diffusion, the viscous core radius is a growing function
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FIG. 11. Time evolution of energy decay (left) and compressible energy decay (right) (1=AUSM-ϕtriad,

2=AUSM-ϕATVL, 3=MENO), case C2.

of time. The pressure defect is located in the center of the vortex. The results obtained with
ϕtriad are compared with those obtained with a sixth-order-accurate Hermitian scheme on
the same grid. It can be noted in Fig. 12 that the AUSM-ϕtriad scheme gives results in very
good agreement with the Hermitian scheme. To get a finer analysis of the capability of the
AUSM-ϕtriad scheme, a zoom around the center of the vortex is provided on the longitudinal
distributions ofv and p.

6.5. 2-D Time-Developing Mixing Layer

This test case consists of two streams moving in the opposite directions, with a smooth
velocity profile in between:

u = 1

2
tanh(2y).

The mean temperature profile is

T = 1+ M2γ − 1

2
(1− u2), (16)

with M = 0.8 andγ = 1.4. The flow is periodic in the streamwise direction,x, and symme-
try conditions are applied in the normal direction,y. The mesh is uniform in both directions.
The computations are realized on two grids (1502 cells (G1) and 3002 cells (G2)).

This flow is sensitive to small disturbances, and so the instability is forced by adding
small perturbationsu′ andv′ to the mean flow,

u′ = αyLx

10π sin
(

2πx
Lx

)
e− y2

10

v′ = α cos
(

2πx
Lx

)
e− y2

10,
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FIG. 12. Taylor vortex advection: longitudinal distribution along the centerline of the domain of the velocity
componentv (top) and the static pressurep (bottom) att = 5.

with amplitudeα = 0.05 and wavelengthLx = 20δω0, whereδω0 = 1 represents the initial
vorticity thickness. The height of the domain isL y = 26. The vorticity thickness is defined
as

δω = 1u∣∣∣ d
(
ρu
ρ̄

)
dy

∣∣∣
max

,
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FIG. 13. 2-D mixing layer. Time evolution of vorticity thickness.

where1u is the difference between the velocities in the upper and lower domains. ¯ρ and
ρu are spatial averages in thex-direction. Two-dimensional Navier-Stokes equations are
solved. The convective Mach numbers isMc = 0.38, the Reynolds number isRe= 400 and
CFL= 0.5. The growth history of the mixing layer is shown in Fig. 13 and compared with
ENO computations under the same initial conditions. The ENO scheme is still sensitive
to the grid mesh, whereas the AUSM-ϕtriad scheme is already independent. AUSM-ϕtriad

gives a result with 1502 cells similar to that of ENO with 3002 cells. The only difference
is located in the nonlinear phase where the growth ofδω is faster with AUSM-ϕtriad. Five
vorticity contours obtained on the gridG1 with AUSM-ϕATVL, AUSM-ϕtriad, and ENO
schemes are plotted in Fig. 14. The differences are weak in the vortex but AUSM-ϕtriad has
a best behavior in the braid.

FIG. 14. 2-D mixing layer. Iso-vorticity att = 50.
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FIG. 15. 3-D mixing layer. Time evolution of vorticity thickness (computationC1).

6.6. 3-D Time-Developing Mixing Layer

As in the previous case, Navier–Stokes equations are solved. The results of AUSM-ϕtriad

scheme are compared with the results of a DNS computation. The initial conditions are
defined in [16]. The essential conditions of the computation are rewritten here: the domain
has a parallelepipedic shape with 65 grid points uniformly spaced in each direction. The
box lengths areLx = Lz = 13.36 andL y = 10. Periodicity conditions are imposed inx
and y directions and a slip condition is applied on the walls bounding the domain in the
z-direction. The mean velocity profile is given by

u = erf(y
√
π)

and the temperature profile has the expression (16). The static pressure is uniform,Re=600,
Mc = 0.8, andCFL = 0.5. The initial conditions are specified by adding a small random
number to each quantity (ρ, u, v, w, T). For example,

ρ(x, y, z) = ρ(x, y, z)+ αr exp−y2
,

whereα = 0.0001 (computationC1) or 0.0025 (computationC2) andr is a random number
uniformly distributed between−0.5 and 0.5.
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FIG. 16. 3-D mixing layer. One static pressure surface att = 45 (computationC2).

The time-developing mixing layer follows three phases. The first one corresponds to
the linear growth of the fundamental, most unstable mode. The second one describes the
nonlinear setup (growth of the subharmonic waves) and the last one describes saturation.
The time evolution of the thickness vorticity during the linear phase is plotted on Fig. 15
(computationC1) and compared with the result obtained in [16] with a direct numerical
simulation.

After Sandham and Reynolds [16], with an initial disturbance of the form

u′ = û expi (βx+γ z−ωt),

whereβ andγ are the wavenumbers inx- andz-directions respectively and̂u is an eigen-
function of the linear instability wave, the oblique mode is the most amplified when 0.6<

Mc < 0.8. The behavior of the flow becomes strongly 3D. The results of this simulation
are presented in Figs. 16 and 17 (computationC2). One static pressure contour value is
shown att = 45 (linear phase) and att = 65 (starting of the nonlinear phase). Att = 45,
the minimum and the maximum values ofp arepmin = 1.0146 andpmax= 1.0163 and the
plotted value of the surface ispplotted= 1.0156. Att = 65, pmin = 0.8482,pmax= 1.115,
and pplotted= 0.95. As explained in [16], whenMc = 0.8, during the linear phase, there is
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FIG. 17. 3-D mixing layer. One static pressure surface att = 65 (computationC2).

no longer any tendency toward a spanwise coherence and waves at 45◦ are most common.
This behavior is well described by the scheme.

7. CONCLUSION

The test cases show that it is possible to improve the accuracy of the MUSCL approach.
This becomes equivalent to ENO family schemes or Hermitian schemes for the compressible
flows if the nonlinear functionsϕ are expressed in aϕtriad taking into account the local
variations of each quantity. For the quasi-incompressible flows, an AUSM-centered scheme
coupled with a SGS model seems to be a good approach. Adding to the basic well-known
advantages of the algorithm proposed herein, the good accuracy of the numerical solution
opens new perspectives for the schemes based on the MUSCL approach, particularly for
simulations of unsteady or transient flows. Algorithmically, the correction proposed herein
is easy to implement and the additional time consumed is very small. Other computations
[5] show that theϕtriad associated with Roe splitting brings out the same improvements as
the coupling AUSM-ϕtriad.
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